

Kubernetes: Persistent Storage with Rook

Contents
Revision 1

Rook Introduction 2
Prerequisites 2
Install Linux packages 3
Configure and deploy operator.yaml 3
Configure and deploy cluster.yaml 6
Setup storage-class and replica pool - 14
Create a new environment and run your application 17
Verify data persistence across replication with host failure scenario - 21
Disable host running the current pod 24
Verify data in the new Pod 25

Revision

Version Date Author Changes
0.1.0 08/24/2018 Anubhav

Sharma
Initial Draft

Confidential and Proprietary Page 1​ of 28

Rook Introduction

Rook is a CNCF open-source project built to deliver storage solution for
Kubernetes leveraging battle-tested open-source storage technologies
including Ceph, which has years of production deployments and runs some of
the worlds largest clusters. Rook is available under Apache 2.0 license.

As containers are ephemeral by nature, without a persistent storage solution,
you can lose your data as container dies. This problem is solved through
persistent storage solutions that can be accessed by Kubernetes applications
and deliver scale, performance and availability required for large data stores
for cloud native environment.

Rook is a great fit to solve the persistent storage problem for containers and
this paper, we demonstrate an easy integration of rook with Nirmata platform
and provisioning of highly available replicated storage.

With Rook you can either build dedicated storage clusters or hyper-converged
clusters where your apps run alongside storage. Rook integrates Ceph with
multiple storage presentations including object storage (compatible with S3
and swift), block storage, and POSIX-compliant shared file system.

Rook efficiently distributes and replicates your data across your cluster to
minimize the risk of data loss. With snapshots, cloning and versioning, no more
losing sleep over your data.

Prerequisites

1. Nirmata Cluster with Kubernetes 1.7+, minimum 3 nodes in a cluster (We are
using Kubernetes version 1.9.4 with 4 nodes).

2. Flex Volume Configuration: Enabled by default with Nirmata (Directory:
"/opt/nirmata/volume-plugins")

3. kubectl: 1.9+ (for setting rook cluster)
4. dataDirHostPath Storage: Path on VM node(host) to store config and data for

rook services (enough to meet container persistent storage requirements);
default is /var/lib/rook

5. Linux packages: rbd-fuse, ceph-fs-common

Confidential and Proprietary Page 2​ of 28

Install Linux packages

On Ubuntu, run these 2 commands as root (or sudo) on each node VM

● apt-get install rbd-fuse

● apt-get install ceph-fs-common

anubhav@anubhav-k8s-hg-86496:~$ sudo apt-get install rbd-fuse

anubhav@anubhav-k8s-hg-86496:~$ sudo apt-get install ceph-fs-common

Setup your Kubernetes Cluster through Nirmata

1. Setup your ​Cloud-provider​.
2. Setup your container ​Hostgroup​.
3. Setup your Kubernetes ​Cluster​.

Your Kubernetes cluster will look as below -

Configure and deploy operator.yaml

To work with Nirmata version 2.1.0, you need make couple of configuration
changes to operator.yaml file.

Full yaml file is available here - ​operator.yaml

Modify following parameters in operator.yaml -

Using extensions instead of apps -

Confidential and Proprietary Page 3​ of 28

https://docs.nirmata.io/en/latest/CloudProviders.html
https://docs.nirmata.io/en/latest/HostGroups.html
https://docs.nirmata.io/en/latest/Clusters.html
https://github.com/rook/rook/blob/master/cluster/examples/kubernetes/ceph/operator.yaml

Configure flex-volume path for ceph volume-plugins.

Apply operator.yaml to your cluster through “Apply YAML” option in cluster
pulldown menu on top right -

Drop your operator.yaml file here or select the file from directory -

Confidential and Proprietary Page 4​ of 28

Use Nirmata shell and run Kubectl command to verify that operator, discover
and agent pods are up and running.

Confidential and Proprietary Page 5​ of 28

Configure and deploy cluster.yaml

We modify cluster.yaml for deployment in Nirmata. Cluster.yaml will install in
roo-ceph namespace. Nirmata has construct of environments for applications.
All applications are deployed in an environment. For application level isolation
application namespace is “applicationname-environmentname” and for shared
namespace within an environment, it “environmentname”.

For our purpose, we will deploy cluster.yaml as an application in rook-ceph
environment. You can do that with following steps -

1. Create rook-ceph environment with shared namespace isolation level.

Confidential and Proprietary Page 6​ of 28

Once setup, your environment will look as below -

2. Create application “rook-cluster” in application catalog using cluster.yaml as
shown below -

Cluster.yaml file spec -

apiVersion: ceph.rook.io/v1beta1

kind: Cluster

metadata:

 name: rook-ceph

spec:

 dataDirHostPath: /var/lib/rook

Confidential and Proprietary Page 7​ of 28

 # The service account under which to run the daemon pods in this cluster if

the default account is not sufficient (OSDs)

 serviceAccount: rook-ceph-cluster

 # set the amount of mons to be started

 mon:

 count: 3

 allowMultiplePerNode: true

 # enable the ceph dashboard for viewing cluster status

 dashboard:

 enabled: true

 network:

 # toggle to use hostNetwork

 hostNetwork: false

The requests and limits set here, allow the mgr pod to use half of one CPU

core and 1 gigabyte of memory

mgr:

limits:

cpu: "500m"

memory: "1024Mi"

requests:

cpu: "500m"

memory: "1024Mi"

The above example requests/limits can also be added to the mon and osd

components

mon:

osd:

 storage: # cluster level storage configuration and selection

 useAllNodes: true

 useAllDevices: false

 deviceFilter:

 location:

 config:

 # The default and recommended storeType is dynamically set to bluestore

for devices and filestore for directories.

 # Set the storeType explicitly only if it is required not to use the

default.

 # storeType: bluestore

 databaseSizeMB: "1024" # this value can be removed for environments with

normal sized disks (100 GB or larger)

 journalSizeMB: "1024" # this value can be removed for environments with

normal sized disks (20 GB or larger)

Cluster level list of directories to use for storage. These values will be

set for all nodes that have no `directories` set.

directories:

- path: /rook/storage-dir

Individual nodes and their config can be specified as well, but 'useAllNodes'

above must be set to false. Then, only the named

nodes below will be used as storage resources. Each node's 'name' field

should match their 'kubernetes.io/hostname' label.

nodes:

- name: "172.17.4.101"

directories: # specific directories to use for storage can be specified

for each node

- path: "/rook/storage-dir"

resources:

limits:

cpu: "500m"

memory: "1024Mi"

requests:

cpu: "500m"

memory: "1024Mi"

Confidential and Proprietary Page 8​ of 28

- name: "172.17.4.201"

devices: # specific devices to use for storage can be specified for each

node

- name: "sdb"

- name: "sdc"

config: # configuration can be specified at the node level which

overrides the cluster level config

storeType: filestore

- name: "172.17.4.301"

deviceFilter: "^sd."

Create a cluster application in the catalog using above cluster.yaml file -

3. Run cluster application in rook-ceph environment and apply role-binding -

Go to environment rook-ceph and click on run an application tab -

Confidential and Proprietary Page 9​ of 28

Choose the rook-cluster application

And click “Run Application”.

Import role-bindings into the application -

Here is sample yaml for role-binding and Service Account definitions -

apiVersion: v1

kind: ServiceAccount

metadata:

 name: rook-ceph-cluster

 namespace: rook-ceph

kind: Role

apiVersion: rbac.authorization.k8s.io/v1beta1

metadata:

 name: rook-ceph-cluster

 namespace: rook-ceph

rules:

- apiGroups: [""]

 resources: ["configmaps"]

 verbs: ["get", "list", "watch", "create", "update", "delete"]

Allow the operator to create resources in this cluster's namespace

Confidential and Proprietary Page 10​ of 28

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1beta1

metadata:

 name: rook-ceph-cluster-mgmt

 namespace: rook-ceph

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: rook-ceph-cluster-mgmt

subjects:

- kind: ServiceAccount

 name: rook-ceph-system

 namespace: rook-ceph-system

Allow the pods in this namespace to work with configmaps

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1beta1

metadata:

 name: rook-ceph-cluster

 namespace: rook-ceph

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: rook-ceph-cluster

subjects:

- kind: ServiceAccount

 name: rook-ceph-cluster

Import the above yaml into the application using menu below -

Confidential and Proprietary Page 11​ of 28

Verify that mon and mgr pods are getting deployed. You can verify by checking
events and tasks and by going to cluster shell and running kubectl commands -

Output from Application events and tasks tab -

Confidential and Proprietary Page 12​ of 28

Output through Nirmata shell into cluster

Confidential and Proprietary Page 13​ of 28

Setup storage-class and replica pool -

Use the storage-class yaml for block storage -

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: rook-ceph-block

provisioner: ceph.rook.io/block

parameters:

 pool: replicapool

 # Specify the namespace of the rook cluster from which to create volumes.

 # If not specified, it will use `rook` as the default namespace of the

cluster.

 # This is also the namespace where the cluster will be

 clusterNamespace: rook-ceph

 # Specify the filesystem type of the volume. If not specified, it will use

`ext4`.

fstype: xfs

Apply the storageclass.yaml to your Kubernetes cluster -

Confidential and Proprietary Page 14​ of 28

Import replica-pool setting into your cluster application in rook-ceph
environment using YAML manifest below -

apiVersion: ceph.rook.io/v1beta1

kind: Pool

metadata:

 name: replicapool

 namespace: rook-ceph

spec:

 failureDomain: host

 replicated:

 size: 2

Confidential and Proprietary Page 15​ of 28

Verify that storage-class is configured on the cluster through NIrmata shell -

Verify the pool is setup with replication size of 2 -

Confidential and Proprietary Page 16​ of 28

Create a new environment and run your application

Choose Environment menu and create a new environment to run your
application -

Confidential and Proprietary Page 17​ of 28

In this example, we will use mysql application with following yaml -

apiVersion: v1

kind: Service

metadata:

 name: wordpress-mysql

 labels:

 app: wordpress

spec:

 ports:

 - port: 3306

 selector:

 app: wordpress

 tier: mysql

 clusterIP: None

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: mysql-pv-claim

 labels:

 app: wordpress

spec:

 storageClassName: rook-ceph-block

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 20Gi

apiVersion: apps/v1beta1

kind: Deployment

metadata:

 name: wordpress-mysql

 labels:

 app: wordpress

spec:

 strategy:

 type: Recreate

 template:

 metadata:

 labels:

 app: wordpress

 tier: mysql

 spec:

 containers:

 - image: mysql:5.6

 name: mysql

 env:

 - name: MYSQL_ROOT_PASSWORD

 value: changeme

 ports:

 - containerPort: 3306

 name: mysql

 volumeMounts:

 - name: mysql-persistent-storage

 mountPath: /var/lib/rook

 volumes:

Confidential and Proprietary Page 18​ of 28

 - name: mysql-persistent-storage

 persistentVolumeClaim:

 claimName: mysql-pv-claim

Create an application in the catalog using the above yaml -

Run it in your environment -

Verify that application is running using persistent volumes -

Confidential and Proprietary Page 19​ of 28

Verify workload status -

Verify persistent volume info

Verify pod status from Nirmata shell -

Confidential and Proprietary Page 20​ of 28

Verify data persistence across replication with host failure scenario -

1. Navigate to Environments→​Environment Name​→​Application​→​Pod Name
2. Click the container name (mysql) under Running Containers
3. Click the Gear Icon on top right→Launch Terminal

4. Leave sh as Command, click Connect Terminal

Confidential and Proprietary Page 21​ of 28

5. In the terminal window, enter mysql command to connect to mysql database as
root user
mysql -u root -pchangeme

6. Create new database
mysql> ​create database testrook;
Query OK, 1 row affected (0.00 sec)

7. Verify
mysql> ​show databases;
+---------------------+
| Database |
+---------------------+

Confidential and Proprietary Page 22​ of 28

| information_schema |
| #mysql50#lost+found |
| mysql |
| performance_schema |
| testrook |
+---------------------+
5 rows in set (0.01 sec)

8. Connect to new database

mysql> ​use testrook;
Database changed

9. Create new table
mysql> ​create table employee (
 id INT AUTO_INCREMENT PRIMARY KEY,
 name varchar(20),
 dept varchar(10),
 salary int(10));

Query OK, 0 rows affected (0.12 sec)

10. Insert few records in the new table

mysql> ​insert into employee values(100,'Thomas','Sales',5000);
Query OK, 1 row affected (0.08 sec)

mysql> ​insert into employee values(200,'Jason','Technology',5500);
Query OK, 1 row affected (0.11 sec)

mysql> ​insert into employee values(300,'Mayla','Technology',7000);
Query OK, 1 row affected (0.06 sec)

mysql> ​insert into employee values(400,'Nisha','Marketing',9500);
Query OK, 1 row affected (0.05 sec)

mysql> ​;
Query OK, 1 row affected (0.05 sec)

11. Verify
mysql> ​select * from employee;
+-----+--------+------------+--------+
| id | name | dept | salary |
+-----+--------+------------+--------+
| 100 | Thomas | Sales | 5000 |
| 200 | Jason | Technology | 5500 |
| 300 | Mayla | Technology | 7000 |
| 400 | Nisha | Marketing | 9500 |
| 500 | Randy | Technology | 6000 |

Confidential and Proprietary Page 23​ of 28

+-----+--------+------------+--------+
5 rows in set (0.00 sec)

12. Exit from mysql and terminal
mysql> exit

Disable host running the current pod

1. Find the Host where the Pod is running by navigating to
Environments→​Environment Name​→​Application​→​Pod Name ​(Host IP shown
under Pod Status)

2. As an admin user, go to Clusters→​Cluster Name (running this environment)​.
Click View details in Node box, click the gear icon next to the Host running the
Pod, click Disable Node

4.Click Disable Node to confirm

Confidential and Proprietary Page 24​ of 28

Verify data in the new Pod

On disabling the node where the original Pod was running, Kubernetes will reschedule
the Pod on another available host in the cluster. Pod name will be different from the
original one. Verify by navigating to Environments→​Environment
Name​→​Application​→​Pod Name

Confidential and Proprietary Page 25​ of 28

Login to mysql database

1. Navigate to Environments→​Environment Name​→​Application​→​Pod
Name​→mysql (under Running containers). Click the gear icon on top
right→Launch Terminal

1. Leave sh as Command, click Connect Terminal

Confidential and Proprietary Page 26​ of 28

2. In the terminal window, enter mysql command to connect to mysql database as
root user
mysql -u root -pchangeme

3. Verify “testrook” database

mysql> ​show databases;
+---------------------+
| Database |
+---------------------+
| information_schema |
| #mysql50#lost+found |
| mysql |

Confidential and Proprietary Page 27​ of 28

| performance_schema |
| ​testrook​ |
+---------------------+
5 rows in set (0.01 sec)

4. Connect to testrook database

mysql> ​use testrook;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed

5. Verify records in employee table

mysql> ​select * from employee;
+-----+--------+------------+--------+
| id | name | dept | salary |
+-----+--------+------------+--------+
100	Thomas	Sales	5000
200	Jason	Technology	5500
300	Mayla	Technology	7000
400	Nisha	Marketing	9500
500	Randy	Technology	6000
+-----+--------+------------+--------+
5 rows in set (0.00 sec)

6. Exit from mysql and terminal
mysql>​exit;

Confidential and Proprietary Page 28​ of 28

