
The Enterprise Cloud Native Journey
By Keith Townsend

Executive Summary
There is a great deal of excitement around Kubernetes and PaaS. There is
also some overlap. IT organizations have competing priorities. On one end
Kubernetes offers the ultimate in developer flexibility. While the flexibility
proves a powerful business capability, organizations find themselves
frozen with the number of options to spin up a Kubernetes powered
development environment.

Platform as a Service (PaaS) offers a rapid on-ramp to modern application
design while providing the guardrails required to support modern applica-
tions in the enterprise. However, these guardrails may also prevent bring-
ing legacy applications along. This eBook sheds light on when to select a
PaaS vs. Kubernetes or something in-between.

This eBook focuses on the business and technical challenges of deploying,
adopting and managing a cloud-native infrastructure that delivers on the
promise of business agility. We set out to shed light on the following topics.

• The relationship between Platform as a Service (PaaS) and containers

• When to adopt pre-packaged PaaS solutions such as Cloud Foundry

• Deploying traditional applications in a cloud-native platform

• Approaches to multi-cloud

• Leveraging cloud-native infrastructure for serverless or
Functions as a Service (FaaS)

Keith Townsend
Keith Townsend, Founder of the
CTO Advisor, is a management
consultant and analyst with over
20-years of experience.

He has worked across a number of
industries including but not lim-
ited to Finance, Pharmaceuticals,
Manufacturing and the U.S.
Federal Government.

As a consultant Keith has helped
Fortune 500 companies redefine
their global data center strategies
and IT processes.

Keith is a sought-after speaker and
industry influencer. He has written
for
publications including ZDNet,
TechRepublic, and TechTarget.

He is a frequent co-host of
the analyst web show theCube,
recorded live during many major
industry conferences.

About the Author

https://thectoadvisor.com

eBook

Introduction
I spoke with an architect working for a global professional services firm
that was fresh off the heels of a private cloud deployment. The architect
was lamenting how they’d invested so many resources in deploying a
Windows Azure pack-based cloud that developers weren’t consuming.
Enterprise IT leaders solely want to provide cloud-native infrastructures
that enable agility while avoiding an explosion in management overhead.

From early cloud management platforms (CMP) to OpenStack to now
Kubernetes, the enterprise has been in pursuit of the perfect balance of
form vs. function.

Much of the attention has moved away from CMP and all in one
private cloud platforms such as OpenStack. Containers, orchestrated by
Kubernetes, has become the latest trend in cloud-native infrastructure.
However, Kubernetes hasn’t solved the core business and technology
challenges associated with adopting cloud-native architectures in
brownfield environments.

Organizations can look to hyperscale companies such as Netflix for
examples of how to deploy containers in brownfield environments that are
adopted by developers. Looking at the case of Netflix, IT leaders will better
understand the relationship of infrastructure to the development process.
Also, these leaders gain a better comprehension of the value containers
bring to monolithic applications and microservices-based applications.

In this eBook, we’ll discuss the business and technical challenges of
deploying, adopting and managing a cloud-native infrastructure that
delivers on the promise of business agility. Containers prove an excellent
abstraction for cloud-native development. Hopefully, this eBook proves a
reference for creating container strategy within your organization.

The Enterprise Cloud Native Journey

https://queue.acm.org/detail.cfm?id=3158370

Defining Cloud Native
There’s the need to level set on definitions. What
exactly is “cloud-native?” It’s a term that the largest to
smallest enterprise technology firms have adopted.
Is an application deployed using native AWS products
such as EC2, Elastic Load Balancers, and Auto Scaling
cloud-native?

The term has married the concept of containers.
Here’s the Cloud Native Computing Foundation’s
(CNCF) definition for cloud-native.

Cloud native systems have the following properties:

• Containerized. Each part (applications, processes, etc.)
is packaged in its container. The packaging facilitates
reproducibility, transparency, and resource isolation.

• Dynamically orchestrated. Containers are actively
scheduled and managed to optimize resource utilization.

• Microservices oriented. Applications subdivide into
microservices. The architecture significantly increases
the overall agility and maintainability of applications.

With the CNCF definition in mind, this eBook focuses
on containers, container orchestration, and microser-
vices in brownfield environments. As with any great
technology discussion, we’ll start this discussion
with people.

Who does cloud-native impact?

There are several lenses from which to look at cloud-
native. Most conversations begin with developers and
speak to operators. However, these are two broad
groups that include several sub-categories. Not every
developer has the same needs or responsibilities.
The same applies to operators. Cloud-native is yet
another application architecture within an enterprise
with several application architectures. Let’s break
down the personas in each group.

The majority of cloud-native documentation
commonly refers to developers and operators when
discussing the roles in application management.
Developers commonly create and package
applications for deployment within a cloud-native
infrastructure. Operators deploy and manage these
applications in production. Organizations such
as Netflix combine the roles using DevOps as a
management concept.

However, most enterprise IT shops organizational
roles don’t map cleanly to the two-well-defined
cloud-native roles. The term developer isn’t very
straightforward. When referring to developers in
typical enterprise IT, the term applies to three
different functions within IT.

Developers is a broad term in traditional enterprise IT.
When looking at it through the lens of an infrastruc-
ture IT team, the term developer maps to any team
that’s an internal customer. That group includes
packaged application support, internal developers,
and third-party developers.

Packaged Application Support – Commonly referred
to as the “App Team,” application support typically
customizes and deploys packaged software such as
SAP or EMR. The application support team works
with the packaged software provider to determine
the eligibility of a software product’s deployment in
cloud-native infrastructure.

Internal Developer – The internal developer writes
business line software. Similar to Netflix’ journey
to containers, much of the existing software is
monolithic in design. These developers require
both incentive to re-platform their applications for
cloud-native infrastructure or guarantees that
existing software runs reliably in cloud-native
infrastructure without much modification.

External Developer – The external developer is an
external contractor or 3rd party application devel-
oper. While organizations realize the advantages of
external help, organizations also realize the challenges
of changing culture outside of their direct control.

Again, in the idealistic cloud-native deployment,
developers hand off container packaged applica-
tions to operators, or operations systems, to deploy.
Operators determine the attributes of the infrastruc-
ture needed to scale the packaged applications in
production. Changes in the application update via
new container images that are rolled into production
by the operations team.

The cloud-native operator loosely translates to
the IT infrastructure team. In most organization, IT
infrastructure includes the following groups.
I’ll attempt to encapsulate these multiple groups
into two major categories.

eBookThe Enterprise Cloud Native Journey

eBookThe Enterprise Cloud Native Journey

Datacenter Infrastructure –
Datacenter infrastructure includes
all of the physical and logical
components needed to provide
basic compute capability. Groups
within this category include
Network, virtualization, cloud
infrastructure, storage, service
management and security.

Platform Infrastructure –
Platform infrastructure includes
the layer above the operating
system commonly referred to as
middleware. These are services
that developers can leverage to
create applications. Database
Administration (DBA), message
bus services, and web services
commonly full under this group’s
purview.

Application Deployment Workflow

One of the appeals of cloud-native is the ability for developers to create
container images needed to deploy an application. The ability to package
the application enables operations teams to manage a wide variety of
applications on common cloud-native infrastructure. In practice, brown-
field application deployment isn’t as clean.

Due to the lack of a prescriptive method of packaging applications for
deployment, many teams have adopted an ad-hoc process for application
deployment and updates. The following workflow normally represents the
process.

Developers receive an operating system instance from the operations
team. Developers install and test their code on the pre-production system.
After a series of check and integration testing, the application goes live.
Developers handoff runbooks and support information to the operations
teams. In case the application requires updates of break-fix, a similar
process is used to deploy updates.

Not only is this a challenge for existing monolithic applications, but
this workflow also makes adopting containers difficult. It requires
organizations to document, train, and implement a new workflow for
packaging, to deploy, and supporting cloud-native applications.

Application Development Flow

Start Request VM
Validate

Configuration
Develop

Application
Create

Runbooks Remediate

Defect
Free

Integration
Testing

Provision VM

Validate
Configuration

Deploy to
Production

A
p

p
 T

e
a

m
IT

 I
n

fr
a

st
ru

ct
u

re
T

e
st

IT
 O

p
e

ra
ti

o
n

s

Kubernetes Early Adopters

As in interesting aside, lines
of business (LoB) were early
adopters of cloud-native and
Kubernetes. The trend I’ve
noticed is similar to the trend
of cloud adoption.

While LoB may initially adopt
Kubernetes, similar to the early
trend in public cloud, the service
becomes a centralized platform.

Greater interest from internal
IP develops as the demand
crosses multiple LoB and
central services.

eBookThe Enterprise Cloud Native Journey

Process Before Technology

Give careful thought to how cloud-native fits into application development
and management. In most cases, enterprise organizations find they must
implement a continuous integration/continuous delivery (CI/CD) process
before adopting cloud-native infrastructure.

The CTO Advisor recently engaged a customer that experienced the pains
of implementing cloud-native technologies. The customer had an existing
monolithic application with a distributed development team. The applica-
tion deployment life cycle is very familiar to most organizations.

Deployment
Day

QA Testing Code

Integration
Testing

Cross Team
Reconciliation

Application Lifecycle Workflow

The infrastructure team implemented virtualized environments for each
development team. Each team could now develop application features
independent of a central system. The organization called the CTO Advisor
because the development process slowed, and reduced application
reliability.

It only took one phone call to determine the problem. After years of a
refined systems development life cycle (SDLC), the organization introduced
chaos by providing tooling without a new process to leverage the tooling.

With only a single day to implement code, each team had to coordinate
features and integration testing. While it created a bureaucratic logjam,
the existing process ensured proper integration testing. In the previous
development environment, a single day a month was targeted for appli-
cation updates. An undocumented natural workflow evolved that include
robust integration testing,

By distributing code development without an updated integration testing
process, the team introduced quality control issues into the development
lifecycle. Cloud-native tools proved the wrong tool for the existing process.

If you haven’t designed a CI/CD process rollout alongside your cloud-
native implementation, stop and pull together your stakeholders. You
don’t have to have a CI/CD process with automated testing and controls,
but you must ensure cloud-native infrastructure doesn’t break your
existing workflow. Taking the current process that typically exists between
developers and operations as-is will ensure a bumpy transition to a
cloud-native implementation.

A Lesson from Netflix

Netflix is bottom-up organiza-
tion. The Titus container team
understood that it couldn’t merely
command each application group
to adopt containers. The project
team had to ensure that the
platform adapted to existing
application architectures.

It was critical that Titus supported
existing APIs and development
processes. The need to customize
the container orchestration to
Netflix’ existing operations played
a role in the decision to build Titus
vs. adopt an existing open source
project like Kubernetes.

Most organizations don’t have
the luxury or in-house talent to
customize Kubernetes to existing
processes. It’s critical to identify
critical points in your existing
application support model that
doesn’t comply with you selected
cloud-native tooling.

eBook

The What of Cloud-Native

A common question - what types of applications
deploy in Cloud-Native infrastructure. It is a common
myth that Cloud-Native infrastructure only supports
greenfield deployment. While greenfield deployments
of microservices based applications garner much of
the headlines, there’s a strong argument for deploy-
ing existing monolithic applications in container
infrastructure.

Simply put, enterprise IT has little capacity for net
new operations. As an enterprise architect for a
Fortune 500, I’ve had to turn away projects that
offered significant business value. The application
architecture presented too much of an operational
snowflake. In the end, application support costs
more than the business opportunities provided by
the application. The operations team needed to hire
a dedicated team to support the single application.
Spinning up a dedicated operations stuff or procedure
for snowflakes proves a model that doesn’t scale.

One could make the argument that it was an
opportunity to develop a team where a cloud-native
application support team gets a start. Without a pipe-
line of applications and more importantly a legitimate
architectural framework for future microservices
based applications, effort and resources go to waste
in one-off implementations.

It’s with these challenges organizations look to
leverage existing support and technology infrastruc-
ture to support containers. It starts at the physical
infrastructure. I spoke with the general manager of a
leading virtualization software company that shared
many of his clients want to leverage their existing
virtualization platform for containers. While there
are obvious financial incentives to keep existing
infrastructure, the primary driver was the ability to
support existing applications in a containerized model.

The Enterprise Cloud Native Journey

Netflix discovered that containers were the ideal
platform to more efficiently utilize public cloud-based
VM infrastructure. AWS EC2 instances are relatively
rigid compared to private infrastructure. One of the
advantages private infrastructure is the ability to over
provision infrastructure. Take a VMware vSphere
environment as an example. In VMware vSphere, the
cost to assign 32GB of RAM and four vCPUs to a VM
that only requires 8GB of RAM is relatively low.

While there is a utilization efficiency hit, organizations
don’t realize the financial impact of the inefficiency.
Four virtual hosts have a fixed depreciation cost
whether the host runs 32 VMs or 128 VMs. Public
cloud infrastructure is priced based on the resources
provisioned. If an organization provisions 32GB of
resources, the public cloud bill with reflecting 32GB of
resources. Containers allow a higher level of abstrac-
tion than the virtual machine.

In Netflix’ use case, the company realized cost savings
by placing legacy applications in containers and
then deploying the containers into EC2 instances.
Higher resource efficiency is only one example of the
advantages of containerization of legacyapplications.

Other improvements include:

• Reduced downtime from consistent application
deployment enabled by packaging

• Application portability across private and
public cloud

• Stepping stone to application modernization

During DockerCon EU 2017, much of the discussion
centered on the modernization of monolithic applica-
tions. Organizations such as GE shared their experi-
ences modernizing applications via containerization.
In the case of GE, the company looked to containerize
stateless application. The company then used the
experience to understand the management gap
between virtual machines and containers.

eBookThe Enterprise Cloud Native Journey

Kubernetes Architecture

API

Node 1

Kubernetes
Master Node 2

Node 3

Node 4

UI

User
Interface

CLI

Command
Line

Interface

Image Registry

Where is Cloud-Native Deployed

Where might cloud-native applications appear? The beauty of cloud-native infrastructure
remains the abstraction. In the case of Kubernetes, a cloud-native infrastructure is a service
contract between the operator and the consumer (i.e., the developer).

If a consumer requests a container, the cloud-native infrastructure provides a consistent
experience regardless of the underlying infrastructure.

Since cloud-native infrastructure presents an abstraction, the underlying infrastructure,
the options for infrastructure range from public cloud to private infrastructure. The point of
integration is the cloud-native platform.

Network, storage, and compute drivers are all implemented at the platform level. The
application has no insight into the underlay other than what’s exposed by the platform.

The relationship of containers and PaaS

Separating the concept of PaaS and Containers is difficult. Today, it seems to be a no-brainer
to include containers as part of a PaaS deployment. Many container deployments resemble
PaaS. It’s important to level-set and provide a reminder of the purpose of each solution.

Functions

Apps

Containers

Virtual Machines

Bare Metal

Serverless

Infrastructure

• Platform API

• Platform control plane

• Load balancing

• IaaS interface/plugins

• Logging

• Message Bus

• Authentication

• Access control

• Service catalog/discovery

• Container Service

Many of these components are consumer facing.
Developers must understand how to consume the
services comprising the PaaS. Infrastructure and
development teams must come together and
understand the purpose and therefore design of
the PaaS infrastructure.

eBookThe Enterprise Cloud Native Journey

PaaS

Most PaaS solutions use some form of containers
internally. Docker, then dotCloud, liberated the
container from the platform.

PaaS as a development platform predates the
container movement as a development platform.
The core value of a PaaS is the ability to disaggregate
the code from the infrastructure. Application
developers shouldn’t concern themselves with the
concept of a virtual machine, IP address subnetting
and LUN storage provisioning. These concepts are
required knowledge of the operations teams.
However, application developers should focus on the
business challenge, the data, and code needed to solve
the problem.

An example of a massively successful PaaS is
Salesforce.com. Salesforce hides the complexity
of database administration, server provisioning,
Operation System (OS) versions from the developer.
The developer codes to the Salesforce PaaS and lets
the Salesforce operations teams worry about the
details of the infrastructure.

Bringing it closer to on-premises operations, solutions
such as Cloud Foundry enable similar capability for a
broader range of applications. Cloud Foundry is what’s
called an opinionated platform. More on opinionated
platforms later. The critical thing to note is that
adopting Cloud Foundry allows infrastructure teams
to provide all of the required components of a PaaS
without a tremendous amount of engineering. For
those familiar with hyperconverged infrastructure, it’s
a similar concept but for software environments.

Some components of a PaaS include the following.

eBookThe Enterprise Cloud Native Journey

Containers

A container is a packaging of application components
including operating system dependencies and applica-
tion binaries in a single file. Containers are incredibly
portable packages. Before the broad adoption of
containers, an application team may package an
application using .tar files or executable binaries.

When writing to a PaaS, a .tar file is sufficient. The
code within the .tar has all of the metadata needed to
run the application. However, today, most enterprises
don’t deploy to a PaaS. Operations teams must receive
a set of dependencies from the developer such a
specific version of MySQL or other required runtime.

Within the container image are the application and
all of the operating system dependencies. As long as
the target infrastructure runs the container runtime,
let’s say, Docker, the application will run without
modification. A developer can compile an application
on their laptop and have a reasonable assurance the
operations team can deploy it in production without
modification to the infrastructure.

Packaging is an extremely important advantage of
the container driven cloud-native infrastructure.
Operators can best choose where to run a given
workload. If a microservice such as global image
encoding service requires massive scale, then the
operations team may choose to run the service
across several regional cloud providers.

Containers offer a better packaging when developing
code to run on commodity infrastructure. However,
containers alone don’t offer a PaaS-like experience.
Going back to the Netflix example, Netflix took
traditional JAVA applications and converted the
applications to containers.

By placing the Java binaries and dependencies in con-
tainers, Netflix was able to leverage the infrastructure
better. During the publication of this eBook, Netflix
announced the open source of their Titus platform.
Some interesting stats include launching a half-million
containers a day and 200K clusters a day. A varying
degree of application types exists across the Netflix
container ecosystem.

The team went out of the way to ensure developers
had access to all of the tools and interfaces in the
non-containerized environment. The development
workflow remained uninterrupted. Developers didn’t
need to adopt new constructs of an opinionated PaaS
for the organization to receive the advantages of
cloud-native infrastructure.

As an infrastructure building block, organizations can
build PaaS solutions using containers to run the
underlying components. Container-driven solutions
are sometimes referred to build your own PaaS.

DevDeveloper

Continuous
Integration

Version
Control

Container
Registry

Tester

User

on
ntainer
egistry

Prod

Load
Balancer

Blue
Deployment

lue
oyment

Green
Deployment

een
oyment

Staging
Deployment

ging
oyment

QA
Deployment

QA
oyment

Non-Prod

https://medium.com/netflix-techblog/titus-the-netflix-container-management-platform-is-now-open-source-f868c9fb5436

eBookThe Enterprise Cloud Native Journey

Kubernetes

There are some natural questions for raw consump-
tion of containers. One such question is management.
It’s easy to see an environment where containers
become unwieldy and impossible to manage. How
does an organization practically manage thousands
of containers spread across the world?

Netflix obviously had this challenge in their container
journey. The organization chooses to build a con-
tainer orchestration platform on top of the powerful
data center orchestration platform Mesosphere. The
team considered leveraging the early work of the
Kubernetes project but ultimately decided to build a
custom orchestration platform in the form of Titus
best fit the needs of the organization.

Some of the needs of Netflix mimic the needs of the
enterprise. One of the largest challenges was the
ability to support existing applications. Netflix is a
bottom to up engineering culture. This means they let
the needs of the application engineering team drive
design decisions.

The rest of the industry settled on Kubernetes as
the de-facto platform for container orchestration.
Kubernetes originated out of Google. Within Google,
the platform was responsible for global container
orchestration. Google open sourced the basis of
Kubernetes and donated the code to the Cloud Native
Compute Foundation (CNCF). As of this writing, the
CNCF recently promoted the project to production at
version 1.1.

The appeal of Kubernetes is the vendor-neutral
approach to governance and project direction.
Members of the CNCF reads like the who’s who of
enterprise IT. All three major cloud providers are
members of the CNCF with announced services pro-
vide container orchestration using Kubernetes.

Outside of the major cloud providers, Platinum mem-
bers include Intel, Cisco, Dell Technologies, Docker,
Alibaba Cloud, IBM Cloud, Mesosphere, Oracle,
Pivotal, Red Hat, and VMware. The sponsor of this
eBook Nirmata is a Silver member.

There is extensive and deep support for Kubernetes.
So much so that the major competitive container
orchestration solutions from Docker and Mesosphere
now directly support Kubernetes.

Containers vs. PaaS

There’s a distinct theme in the container vs. PaaS dis-
cussion. The conversation isn’t an either/or option but
both. Even projects such as Cloud Foundry recognize
the value of containers. The question for the
enterprise – Should you build your own PaaS using
containers or deploy containers in an existing PaaS
platform.

Simple question with a surprisingly easy answer. I’m
a management consultant by trade so, I’ll resist the
urge to give a non-answer. Plainly put, it depends on
your desired operational objectives and timeline. I’ve
established that the goal is to build an infrastructure
that application teams will consume in pursuit of
building applications.

Adopting a PaaS platform such as Cloud Foundry (CF)
means fast time to value. In CF, every significant part
of the PaaS is predefined. CF has a project for each of
the primary services required to deliver an application
development environment. There is minimal
engineering needed for the organization.

If you want a jump start on not only cloud-native
infrastructure but cloud-native applications, I’d argue
there are few better options than CF. On the flipside
of the equation, you are married to CF as architecture
and perspective. You will look at containers from the
perspective of a PaaS. Think through what it means to
redeploy all of your traditional applications in CF.
For most applications, redeploying in CF requires
re-writing the application.

A 12-factor application design remains the standard
for re-writing applications for a cloud-native environ-
ment. Many executives find that existing applications
don’t lend themselves to a 12-factor design. Or execu-
tives find very little value in taking on the risk and cost
of refactoring an application for 12-factor design.

Replatforming is something, like Netflix, most teams
wished to avoid. They wanted a platform that would
support both microservices applications and
monolithic applications. Adopting CF brings with it
speed but significant inflexibility while adoption of
containers enables broader adoption of cloud-native
best practices.

eBookThe Enterprise Cloud Native Journey

If the primary driver is to provide a cloud-native
infrastructure that supports containerized monolithic
applications a Kubernetes-first infrastructure proves
a better solution. Similar to Netflix, organizations may
first focus on bringing their monolithic applications to
Kubernetes. After recognizing some of the benefits of
containers for monolithic applications, organizations
may choose to build microservices based applications
on the same underlying infrastructure.

Kubernetes management doesn’t change from
running monolithic applications vs. microservices.
The challenge is missing that opinionated PaaS layer.
Some thought has to go into what components of the
PaaS must Kubernetes replicate and what solution will
provide these PaaS-like capability.

Kubernetes isn’t without any consistent develop-
ment environment options. There is a reason for a
debate between using Kubernetes as a PaaS vs. Cloud
Foundry. First, the appeal of Kubernetes is the ability
to run workloads across environments. A container
can run on a container host in Amazon or a container
host on VM’s in VMware vSphere.

Likewise, a Kubernetes Deployment object allows for
portability of more complex application groupings.
By using out of the box Kubernetes features, devel-
opment and operation teams have a wide range of
options for building portable applications.

When using a Kubernetes Deployment object to build
an application, developers create a portable YAML-
based description of the application. The contents of
the YAML file will have details such as which container
images to deploy, the number of pods required and
the required network ports. Additional out of the box
features include autoscaling pods. The project has
published examples for deploying stateful and
stateless applications of variable size.

Projects are looking to extend the basic out of the box
PaaS capability of Kubernetes. Helm is an example of
a project that provides management of applications
built on Kubernetes. Helm may allow for better porta-
bility of Kubernetes-based applications across clusters
and providers.

Taking the concept, a step further, Kubernetes
Deployment objects enable more complex use cases.
One such use case is to deploy a container-based
PaaS. As highlighted in an earlier chapter, most PaaS

platforms are deployed using containers. There’s work
to be performed in both Kubernetes and individual
PaaS solutions to enable native Kubernetes as a
platform for the underlying infrastructure.

The whole market is still developing. Kubernetes has
the potential to be the foundation of future PaaS
projects. Redhat OpenShift is an example of a
platform deployed using Kubernetes.

CaaS vs. PaaS Cheat Sheet
Use Case CaaS PaaS

Rapid deployment of end-to-end environment X

Multi-cloud X X

Granular service selection X

Containerizing legacy apps X

Microservice architecture adoption X X

Optimize VM/Cloud Instance utilization X

Serverless & Functions as a Service

An example of the potential of Kubernetes as a
PaaS is the work being in-progress in the Serverless
computing world. Within the CNCF rages a debate
defining Serverless. The most famous example of
a Serverless platform remains the AWS’ Lambda
Functions as a Service (FaaS).

Lambda eliminates the concept of an operating
system in the service. The code resides within an
S3 object. The code is executed based on an event
trigger from an AWS event such as a file written to
S3. Developers have no sense of the amount of CPU,
network or storage required to execute the code. The
only lever available to Lambda consumers is RAM.

The infrastructure operations exist outside of view of
the service consumer. If something in the infrastruc-
ture were to break such as an OS kernel panic, there’s
no indication to the application. The function would
just run on a different container.

The last point of the previous paragraph is critical.
These Serverless functions run inside of containers.
Containers offer the instant run capability required
for functions at scale. There are a few open source
projects that look to offer Serverless constructs in
customer side infrastructure.

https://kubernetes.io/docs/tasks/run-application/run-stateless-application-deployment/

The debate within the CNCF revolves around the
operations model. If a customer has to concern
themselves with the container infrastructure running
the FaaS platform, is it serverless?

Regardless of your side of the argument, the import-
ant concept to walk away with is that FaaS and
Serverless run within the containerized infrastructure.

Here are a few open source projects that deploy on a
Kubernetes infrastructure.

• OpenWhisk
• Open FaaS
• Fission

The progress of FaaS on containers indicates the
direction PaaS points. It’s a reasonable assumption
that the opinionated PaaS options for Kubernetes will
quickly grow.

eBookThe Enterprise Cloud Native Journey

Kubernetes Solution Checklist

You’ve gotten to the point where you wish to deploy a
Kubernetes solution? Looking at the landscape, there
is no shortage of Kubernetes solutions.

Here’s a short list of Kubernetes distributions and
providers.

• Nirmata (Sponsor of this eBook)
• RedHat OpenShift
• VMware PKS
• Docker Enterprise Edition
• Cisco
• Cloud Foundry
• CoreOS
• Google Cloud
• Microsoft Azure
• AWS (in-preview as of this writing)

For a full list, visit the Kubernetes project page.

With so many distributions where to start in selecting
a solution. On the next page is a checklist for some
criteria in selecting a Kubernetes solution.

eBookThe Enterprise Cloud Native Journey

Container as a Service vs Platform as a Service

Operations
Feature Description
Multi-cloud support Ability to deploy and manage applications across multiple clouds including private

and the major public cloud providers
Consider if support is for individual VM (pods and control plan) or integration with
cloud providers Kubernetes implementation

Legacy application support Features and tools to manage stateful and stateless monolithic applications
Tooling for containerization of existing applications

ITSM integration Existing ITSM integration points including configuration management, change
management, and out of the box integration with leading ITSM platforms such as
Service Now and CA

Policy-based workload
management

The ability for abstract the application from the underlying infrastructure. Based
on policy, operations team’s ability to deterministically place workloads on the
underlay that best meets application requirements

Policy-based cluster
management

Ability to manage Kubernetes cluster based on centralized policy such as
autoscaling of Kubernetes and deployment of new pods based on deployment

Upgrade The effort required to upgrade from one version of Kubernetes to the latest version
Delivery model Solution delivered as SaaS, managed, or packaged product

Development
Feature Description
Deployment Object Simplification of packaging Kubernetes Deployment objects to create PaaS-like

capability and application portability across clusters
CI/CD Integration Integration with testing and development tools such as Jenkins and Chef
Code management Integration with code repositories and tools such as defect tracking
Image repository Catalog and organization of services and microservices container images

Security
Security console Centralized security console enabling centralized policy management
Image scanning Ensuring images in the repository meet organizational security standards
Enterprise integration Integration with existing enterprise security products and features
Secrets management Standalone or integrated solution for management of credentials and keys

eBookThe Enterprise Cloud Native Journey

Conclusion

The world of PaaS and CaaS are slowly evolving to merge. Organizations
such as Netflix have shown how to make the change from monolithic
applications to cloud-native architectures gradually. The immediate
benefit includes better utilization of public cloud resources and the ability
to deploy and manage cloud-native and monolithic applications using a
single operations model.

If organizational priorities focus on application development and require
a fast on-ramp to modern application architecture, a prebaked PaaS may
prove more valuable.

Organization needing both PaaS for application development and
containers for application modernization may want to look at an hybrid
solution. A hybrid approach involves adding PaaS-like capability to a
container platform. The hybrid approach provides just enough PaaS
capability for cloud-native application development while taking
advantage of containers.

Nirmata is a complete Kubernetes-based
enterprise container platform that natively
supports both traditional and microser-
vices-style applications. With Nirmata your
teams can easily manage multiple clusters
and your entire application portfolio across
all your environments from a single, intuitive
interface.

About Nirmata

info@nirmata.com
www.nirmata.com

Key features
• Simplified Kubernetes cluster deployments via self-service interfaces

• Automated Cluster Management, including upgrades and elastic sizing

• Governance of clusters and workloads

• Cross-cloud application portability

• Kubernetes application modeling, visibility, and management

• Continuous delivery with integrations to existing build tools

• On-demand application environments

• Fast troubleshooting, proactive assessment

User Interfaces
(Web, UI, REST APIs, CLI)

Core Services

Catalog Environments Policies Analytics Clusters
Cloud

Providers
Image

Registry

CI/CD
Tools

LDAP/AD

Logging

Data PlaneApplication Containers

Control PlaneKubernetes Masters
Nirmata Controllers

InfrastructureKubernetes Workers
Nirmata Agents

Public Clouds Private Clouds

Sign up for a free trial and
check out our blogs and demo videos

http://www.nirmata.com

